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Abstract
We theoretically investigated the spin dynamics of a polaron under a gate voltage in a
one-dimensional organic polymer chain. Spin precession is obtained when a polaron transports
along the polymer chain. The spin precession has a certain periodic length, which is in inverse
proportion to the strength of the spin–orbital interaction. It was found that spin precession takes
place only on the polaron level (intralevel spin precession), while in a rigid semiconductor spin
precession takes place among all the conduction levels (interlevel spin precession). In addition,
the periodic length of polaron spin precession becomes longer for stronger electron–lattice
interaction, indicating long spin relaxation in organic polymers.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the past few years, the potential applications of electron
spin in mesoscopic devices have generated a lot of interest.
π -Conjugated organic semiconductors are emerging as an
important platform for ‘spintronics’, which involves the spin
freedom of a charge carrier to store, process and communicate
information. The underlying idea is to electrically drive
a modulated spin-polarized current. One of the simplest
solutions is to employ a spin-valve where the output current
is governed by switching the spin-polarization in one of the
ferromagnetic contacts. With the development of organic
spintronics, low-dimensional organic spin-valves have been
widely studied, such as thin-film spin-valves [1], molecular
spin-valves [2] and nanowire organic spin-valves [3]. Another
possibility is the so-called spin field effect transistor [4],
in which the spin-polarized current is injected from one
ferromagnetic electrode and then collected by another. During
the transport process, the spin–orbital interaction induces
the spin precession of electrons in the transport layer.

1 Author to whom any correspondence should be addressed.

Consequently, by tuning the ejection state of the spin
precession with respect to the magnetization direction of
the ferromagnetic collector, the transmitted spin-polarized
current is modulated accordingly. However, most of the
previous studies only focused on the rigid semiconductors
and spin–orbital interaction is believed to be weak in organic
semiconductors. The effect of spin–orbital interaction was
often neglected during the investigation of spin transport in
organic devices.

The spin–orbital interaction, which induces the spin
precession, has attracted much attention in recent years since
it plays an important role in the new field of inorganic
semiconductor spintronics [5]. Rashba spin–orbital interaction
is more interesting due to its capability of electrically
controlling the interaction strength. Datta and Das have
theoretically analyzed the Rashba spin–orbital interaction
in a spin transistor that induced spin precessions in a
semiconductor [4]. Tuning of the spin–orbital interaction by an
external gate voltage has been realized in an In GaAs/InAlAs
quantum well [6]. Recently, it was reported that strong Rashba
spin–orbital interaction induces nontrivial subband intermixing
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in quasi-one-dimensional nanowires [7]. In addition, the
Rashba interaction in nanostructures gives rise to an interlevel
spin-flip term rather than any intralevel spin flips [8].

Different from a rigid semiconductor, the electron–lattice
interaction is strong in an organic semiconductor, indicating
that charge accumulations will cause a large lattice distortion.
The softness of an organic semiconductor induces its carriers to
be composite particles with an internal structure characterized
by lattice distortion, such as charged spin polarons and
charged spinless bipolarons. The formation of polarons
leads to hysteretic conductance switching, negative differential
resistance effect and giant magnetoresistance in organic spin-
valve systems [9, 10]. In view of the important role that
polarons play in these spin related devices, it is necessary to
study the flipping character of a spin polaron. In this paper
we theoretically investigate the transport dynamic process of
a spin polaron under a gate voltage in organic polymers.
Calculated results show that the spin orientation of a polaron
precesses with a certain periodic length during its transport.
However, it was found that spin precession takes place only on
the polaron level (intralevel spin precession), while in a rigid
semiconductor the spin precession takes place among all the
conduction levels (interlevel spin precession). In addition, the
spin precession periodic length of a polaron under electron–
lattice interaction is much larger than that of an electron in a
rigid semiconductor. Such results also indicate the long spin
relaxation of organic polymers. In section 2 the model is
described and the dynamical evolution method is presented.
The numerical results and our main conclusions are given in
section 3. Finally, in section 4 we summarize our contents.

2. Theoretical model

In this paper we consider a one-dimensional non-degenerate
polymer chain. A gate voltage is employed to control the
spin–orbital interaction which induces the spin flip and spin
precession of moving carriers. By applying the gate voltage
along �z axis, the related Hamiltonian takes the form [11, 12]

Hso = −β
h̄

�σ · ( �p × �z) = iβ

(
σx
∂

∂y
− σy

∂

∂x

)
, (1)

where β represents the spin–orbital interaction strength related
to the gate voltage and �σ is the Pauli matrix. Although this
kind of spin–orbital interaction is an assumption in the absence
of direct experimental proof so far, it is also meaningful to
study the modification of the spin–orbital interaction by the
gate voltage. For a one-dimensional polymer chain along the �x
axis, only the second term in the bracket of equation (1) is left.
By the tight-binding approach, the spin–orbital interaction in
the following second quantization form is obtained [7, 8]:

Hso = −tso

∑
n

[
C†

n+1,↑Cn,↓ − C†
n+1,↓Cn,↑ + h.c.

]
, (2)

where only the nearest-neighbor spin-dependent interaction in
the perturbation is considered. The isotropic nearest-neighbor
transfer integral tso denotes the spin–orbital interaction strength
with tso = β/2a [7], in which a is the lattice constant.

C†
n,s(Cn,s) is the electron creation (annihilation) operator on

site n with spin s, where s = ±1 denotes spin-up and spin-
down, respectively. Equation (2) shows that the spin–orbital
interaction includes both the flipping and hopping of the spin
carrier, which results in the spin precession during the electron
transport2. Therefore the spin flipping and precession are
closely related to the transport of the carriers.

For a one-dimensional non-degenerate polymer, the
electronic part of the Hamiltonian

He = H0 + Hso, (3)

H0 = −
∑
n,s

tn,n+1

(
e−iγ AC†

n+1,sCn,s + h.c.
)
, (4)

Hso = −tso

∑
n

[
e−iγ A(C†

n+1,↑Cn,↓ − C†
n+1,↓Cn,↑)+ h.c.

]
.

(5)
Here H0 is the tight-binding model in the absence of a gate
voltage plus a driving electric field. The driving electric
field along the chain is added to drive the spin polaron to
move along the chain, and is introduced through the vector
potential A appearing in a complex phase factor in the transfer
integral [13]. During the calculations, periodic boundary
conditions are assumed to obtain a long time motion of the
polaron. In the presence of this driving electric field, the
form of Hso is also changed correspondingly. The parameter
tn,n+1 = t0 − α(un+1 − un) − (−1)nte is the hopping integral
of π electrons between atom (site) n and n + 1 [14]. t0 denotes
the zero-displacement hopping integral between the nth and
(n + 1)th atoms. α is the electron–lattice coupling constant
and un the displacement of the nth site from its equidistant
position. te is the Brazovskii–Kirova symmetry breaking term
for a non-degenerate polymer [15]. Coefficient γ in the
exponent is defined as ea/h̄, with e and a being electron charge
and lattice constant, respectively. The electric field is then
given by E(t) = −∂t A(t) [13]. Here the internal electron–
electron interactions are neglected. It has been predicted that
the electron–lattice interaction will dominate the properties
of polymers if the electron–electron interactions are not too
strong [16, 17]. Due to the soft character of the polymer, the
movement of charges will cause the distortion of the lattice.
Considering the elastic and kinetic energy of the lattice, the
lattice part of the Hamiltonian is described classically by [14]

Hlatt = K

2

∑
n

(un+1 − un)
2 + M

2

∑
n

u̇2
n, (6)

where K is the elastic constant and M the mass of a CH group.
From the Hamiltonian, we can obtain the dynamics of

the electronic state of the π -electrons from the quantum
Schrödinger equation and the corresponding lattice distortion
from the classical Newton equation [13]. The dynamics
is described within the mean-field approximation where
transitions between instantaneous eigenstates are allowed [18]
in contrast to so-called adiabatic dynamics with fixed level
occupation [19]. The evolution of the μth electronic state

2 Different from this, Larmor precession caused by a magnetic field only
contains onsite spin flip which is independent of the carrier movement.

2



J. Phys.: Condens. Matter 20 (2008) 095201 J Lei et al

|�μ(t)〉 with initial value |�μ(t = 0)〉 is obtained by solving
the time-dependent Schrödinger equation

ih̄ψ̇μ,s(n, t) = −tn−1,ne−iγ Aψμ,s(n − 1, t)

− tn,n+1eiγ Aψμ,s(n + 1, t)− s · tso

× e−iγ Aψμ,−s(n − 1, t)+ s · tsoeiγ Aψμ,−s(n + 1, t), (7)

with

|�μ(t)〉 =
( |�μ,↑(t)〉

|�μ,↓(t)〉
)

=
( ∑

n ψμ,↑(n, t)|n〉∑
n ψμ,↓(n, t)|n〉

)
, (8)

and |n〉 is the Wannier state. The Newton equation related to
the lattice displacement is

Mün(t) = α{eiγ A[ρn,n+1(t)− ρn−1,n(t)] + c.c.}
− K [2un(t)− un+1(t)− un−1(t)]. (9)

The charge density matrix ρn,n′ and the density matrix of spin
s(s = ±1)ρs

n,n′ are defined as

ρs
n,n′(t) =

∑
μ

ψ∗
μ,s(n, t) fμψμ,s(n

′, t), (10)

ρn,n′(t) = ρs
n,n′(t)+ ρ−s

n,n′(t), (11)

where fμ is the time-independent distribution function
determined by initial occupation (being 0, 1 and 2). The
coupled differential equations (7) and (9) can be solved
numerically with a Runge–Kutta method of order eight with
step-size control [20], which has been proven to be an effective
approach to study the electronic state evolution [13, 21].

We choose the initial state as the eigenstate of a polaron,
which is given by iteratively solving the static Schrödinger
equation and self-consistent equilibrium condition in the
absence of driving electric field. The initial electronic state
given by the static Schrödinger equation is

εμψμ,s(n, t = 0) = −tn−1,nψμ,s(n − 1, t = 0)

− tn,n+1ψμ,s(n + 1, t = 0)− s · tso

× ψμ,−s(n − 1, t = 0)+ s · tsoψμ,−s(n + 1, t = 0). (12)

The initial site displacements given by the self-consistent
equilibrium condition are

un(t = 0) = α

K
[ρn+1,n(t = 0)− ρn,n−1(t = 0)]

+ [un−1(t = 0)+ un+1(t = 0)]/2. (13)

Selecting parameters referring to those of cis-polyacety
lene with no loss of universality [22], t0 = 2.5 eV, α =
4.1 eV Å

−1
, te = 0.05 eV, K = 21 eV Å

−2
, a = 1.22 Å,

M = 1349.14 eV fs2 Å
−2

. Since a polaron will dissociate as
the driving electric field is higher than 6 × 10−3 V Å

−1
[23],

we set E0 = 5 × 10−5 V Å
−1

for the numerical simulation,
which is small enough to maintain the polaron state during
its movement. It has been pointed out that the behavior of a
polaron is mode-independent when the electric field is lower
than 1.4×10−4 V Å

−1
[24]. In calculations, the driving electric

field E(t) is linearly applied, E(t) = E0/tc · t for 0 < t < tc
and E(t) = E0 for t > tc, respectively, with tc = 30 fs being a
turn-on period.
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Figure 1. Spin evolutions of the polymer without spin–orbital
interaction. The positive points denote spin-up states, negative points
denote spin-down, and zero denotes spinless.

3. Results and discussion

Here we briefly describe the object to be studied. A spin-up
electron (+1/2 along the �z axis) is assumed to be injected into
the polymer chain with a period of N = 100 sites forming a
spin polaron. Then the polaron is the self-trapping state of one
electron and it carries one electronic charge unit with spin 1/2.
An electric field to drive the polaron is applied along the −�x
direction. First, the spin evolution of the polaron without the
gate voltage is represented by

SZ
n (t) = 1

2 [|ψp,↑(n, t)|2 − |ψp,↓(n, t)|2] or
1
2 [ρ↑

n,n(t)− ρ↓
n,n(t)]. (14)

The polaron transports along the polymer chain with a width
full wave at half maximum (FWHM) of about 9.4 sites and
a velocity of 0.036 site fs−1. Since there is no spin related
interaction, the spin keeps its orientation unchanged while the
position of polaron changes during its movement, as shown in
figure 1.

Then the gate voltage is applied to build the spin–
orbital interaction with tso = 0.02 eV, which is treated as a
perturbation compared to the other interactions. It was found
that the trivial spin–orbital interaction can scarcely change the
energy band structure of the system. Therefore, the polaron
transports along the polymer chain with the same width and
velocity as the case without the gate voltage. Interestingly, a
spin precession is induced which is similar to the phenomena
in rigid semiconductors [7], and has never been reported
before in organic polymers. The spin evolution with the gate
voltage is shown in figure 2(a). The spin of the polaron
SZ (t) = �n SZ

n (t) in the uppermost line decreases as the
polaron transports along the polymer chain. And the trace
of polaron is continually shown in the second line under the
periodic boundary condition. With the evolution, the spin of
the polaron became zero and even spin-down. The spin of the
polaron in the third trace reached the maximum of spin-down
orientation at about 5000 fs, which means that the projection of
the spin is completely flipped. Then the spin is reversed again
and the process restarts.

3
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Figure 2. (a) Spin evolutions of the polymer with the spin–orbital interaction (tso = 0.02 eV). The color scale is the same as in figure 1.
(b) Dependence of spin precession on the center position of the moving polaron.

In addition, a polaron has a particle-like characteristic
with a well-defined position. Therefore it is convenient
to display the periodic length of the precession in organic
semiconductors rather than rigid semiconductors, in which
traces of the electrons are extended. For a clear view of the
spin precession, we define the center of the polaron state xc by

xc =

⎧⎪⎨
⎪⎩

Nθ/2π, if 〈cosθn〉 � 0 and 〈sinθn〉 � 0;

N(π + θ)/2π, if 〈cosθn〉 < 0;

N(2π + θ)/2π, otherwise.
(15)

Here

θ = arctan
sin θn

cos θn
, (16)

the averages of sin θn and cos θn are defined as

〈sin θn〉 =
∑
n,s

|ψp,s(n, t)|2 sin θn,

〈cos θn〉 =
∑
n,s

|ψp,s(n, t)|2 cos θn,
(17)

and ψp,s(n, t) is the electronic state of the polaron. This
center is in superposition with that of the charge density of the
system [13], defined by

〈sin θn〉 =
∑
n,s

(ρs
n,n − 0.5) sin θn,

〈cos θn〉 =
∑
n,s

(ρs
n,n − 0.5) cos θn.

(18)

The instantaneous projection of SZ (t) of the polaron during
its transport is shown in figure 2(b). It was shown that the
spin evolution behaves as a cosinoidal rule with a precession
periodic length of about 385 sites in the present parameters.

By adjusting the gate voltage, the strength of the spin–
orbital interaction can be tuned. Although the polaron
transports with the same velocity and width, its spin precesses
faster for a stronger spin–orbital interaction. It was shown
in figure 3 that the corresponding periodic length of the

Figure 3. The periodic length of the precession for different strength
of spin–orbital interaction in the organic semiconductor.

precession is in inverse proportion to the strength of the spin–
orbit interaction. That is the spin detected at the same place is
different, and can be controlled by the gate voltage. This can
also be used in organic spin field effect transistors.

To explicitly understand the spin precession of polaron,
we expand |�μ(t)〉 in a basis of the instantaneous eigenstates
|�ν(t)〉,

|�μ(t)〉 = �νCμ,ν |�ν(t)〉, (19)

where

Cμ,ν =
(

C↑
μ,ν 0
0 C↓

μ,ν

)
. (20)

The eigenwavefunction of the νth instantaneous eigenstate

|�ν(t)〉 =
( |�ν,↑(t)〉

|�ν,↓(t)〉
)

=
( ∑

n φν,↑(n, t)|n〉∑
n �ν,↓(n, t)|n〉

)
(21)

is determined by the instantaneous eigen Schrödinger equation
at that moment

He(t)|�ν(t)〉 = Eν |�ν(t)〉. (22)

The occupation probability on the νth instantaneous eigenstate
with spin s can be given by �μ fμ|Cs

μ,ν |2. The self-trapping

4
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Figure 4. The charge with spin-up and spin-down occupying on the
instantaneous eigenlevels during movement of the polaron. ν = 50
(solid lines) and ν = 51 (dashed lines) denote the lower polaron level
and the higher polaron level, respectively. And ν = 52 (dotted lines)
denotes the lowest unoccupied one.

polaron state results in two deep levels appearing in the
energy gap. The upper level of the two (�u(t) or �p(t))
is singly occupied and the lower one (�d(t)) is doubly
occupied. Figure 4 shows the occupation probability of
some instantaneous eigenstates, which correspond to the lower
polaron level (ν = 50, doubly occupied), the higher polaron
level (ν = 51, singly occupied) and the lowest unoccupied
one (ν = 52), respectively. It was found that the electronic
states on the lower polaron level make no contribution to the
spin precession since it is doubly occupied. Although the
higher polaron level is always singly occupied, the occupation
probability of spin-up and spin-down alternately changes
during the evolution, which induces the spin precession of the
polaron. Spin precession in the polymer layer takes place only
within the polaron level (intralevel). This is different from the
case of a rigid semiconductor, where the spin precession takes
place among all the conduction levels (interlevel) [8].

In the following we briefly discuss the dependence of
polaron spin precession on the system parameters. It was
found that the driving electric field shows a small impact
on the periodic length of the spin precession. This can be
interpreted that in organic polymers the polaron moves as an
entity with its charge and lattice configuration coupled. The
driving electric field only affects the velocity of the polaron.
For a perpendicular gate voltage applied on a carrier, the
Hamiltonian is [8]

Hso ∝ 1

m∗
dVG

dz
�σ · (�v × �z) = 1

m∗2

dVG

dz
�σ · ( �p × �z), (23)

where v is the velocity of the polaron. With a definite
gate voltage applied, the spin precession period time T ∼
m∗/Beff ∼ m∗/v. The spin precession period T and length
λ have a relation λ = vT , so that λ remains unchanged
for the same polaron. However, the spin precession of
a polaron and the interaction strength β or tso are also
sensitively related to the electron–lattice interaction, which
induces a heavy effective mass of the carriers, besides the
gate voltage. A polaron is naturally a localized spin carrier
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Figure 5. The dependence of the spin precession periodic length
(solid circle) and corresponding spin–orbital interaction (solid
square) on electron–lattice coupling. The inset shows the dependence
of polaron effective mass on electron–lattice interaction.

due to the inherent strong electron–lattice interaction. The
electron–lattice interaction couples the charge and the lattice
together, resulting in a heavy effective mass of the carriers in
organic polymers. For instance, the polaron effective mass in
polyacetylene is m∗ ≈ 11.7me [25]. In addition, the polaron
effective mass varies with different electron–lattice interaction
strengths. According to [25], the dependence of the polaron
effective mass m∗ on electron–lattice interaction α is shown
in the inset of figure 5. The polaron effective mass becomes
larger for stronger electron–lattice interaction, due to the
strong coupling between lattice and charge. Furthermore, the
dependence of λ and spin–orbital interaction tso on electron–
lattice interaction α is given in figure 5. It was obtained
from equation (23) that β ∼ 1/m∗2, and from figure 3 that
the spin precession periodic length λ ∼ 1/β or(λ ∼ 1/tso),
therefore tso ∼ 1/m∗2 and λ ∼ m∗2 when the gate voltage
remains a constant. The spin precession periodic length
λ rapidly becomes large when electron–lattice interaction is
strengthened. Therefore, the spin precession in a polymer with
strong electron–lattice interaction decreases correspondingly.
It should be mentioned that for a polaron under electron–
lattice interaction with effective mass m∗ ≈ 11.7me, the spin
precession periodic length is about 10 000 times larger than that
of InGaAs semiconductor with m∗ ≈ 0.042me. Such results
indicate the long spin relaxation of organic polymers. Recently,
Wu and Hu [26] reported that the deposited metal atoms
enhance the spin–orbital interaction at the polymer/metal
interface. This experiment hints at the possibility of controlling
spin–orbital interaction by an external gate voltage which
is beneficial for detecting the spin precession in an organic
polymer.

4. Conclusion

In summary, the spin dynamics under a gate voltage in a
one-dimensional organic semiconductor is investigated. It
was found that the spin of a polaron will appear to precess
periodically when it moves along the chain. The localization of
a polaron (particle-like) makes it easy to probe the dependence

5
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of spin precession on the position of a polaron. By analyzing
the electronic states, we conclude that spin precession takes
place only within the highest occupied state of the polaron,
which is intralevel spin flips compared to the interlevel spin
flips in the case of a rigid semiconductor. For a localized spin
carrier in a polymer, the periodic length of the spin precession
of a polaron is closely related to the strength of the spin–orbital
interaction. Therefore, it is possible to control spin transport in
an organic spin electric device by the external gate voltage.
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